MOAsA-TH-X=3003) STAL ADAPTATION ron
“BO-ALGORETHHS USED OF SESIAL COUPULERS
(WASAY 26 p HC $3.25 csci 123

¢ b
3 Unclag ‘

N] 2i/99 39856

’ m?@uza@a§7

NASA TECHNICAL
MEMORANDUM

NASA TM X-3003

NASA TM X-3003 -

STAR ADAPTATION
FOR TWO ALGORITHMS
USED ON SERIAL COMPUTERS

by Lona M. Howser and Jules]. Lambiotte, Jr.
Langley Research Center

epumo,‘,%
Hampton, Va. 23665 ‘i g
e 6-:‘*
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION < WASHINGTON, D. C. « JUNE 1974

20

1. Report Ne, 2. Government Accession Na, 3. Recipient’s Catalog No.
NASA TM X-3003
4, Title and Subtitle 6. Report Date
J 1974
STAR ADAPTATION FOR TWO ALGORITHMS une 1974 _
6. Performing Organization Code
USED ON SERIAL COMPUTERS
7. Authoris) 8. Performing Organization Report No.
Lona M, Howser and Jules J, Lambictte, Jr, L-9380
10, Work Unit Mo,
9. Performing Qrganization Name and Address 023-11-16-05
NASA Langley Research Center 11. Contract or Grant No,
Hampton, Va, 23665
13 Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum
Naticnal Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C, 20546

15,

Supplementary Notes

16.

Abstract

Two representative algorithms used on a serial computer and presently executed on the
Control Data Corporation 6000 computer were adapted to execute efficiently on the Control

Data STAR-100 computer,

Gaussian elimination for the solution of simultaneous linear equa-

tions and the Gauss-Legendre quadrature formula for the approximation of an integral are the
two algorithms discussed, This paper describes how the programs were adapted for STAR

and why these adaptations were necessary to obtain an efficient STAR program.

Some points

to consider when adapting an algorithm for STAR are discussed, Program listings of the
6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN,
and the STAR version coded in STAR FORTRAN are presented in the appendices.

17,

Key Words {Suggested by Author{s})
STAR computer
(Gaussian elimination
Numerical integration

18. Distribution Statement
Unclassified — Unlimited

STAR Category 19

19, Security Classif. {of this repart}

20, Security Classif, {of this page)

Unclassified Unclassified

21. No. of Pages

29 3¢

22, Price”
$3.25

'For sale by the National Technical Information Sarvice, Springfiald, Vieginia 22151

STAR ADAPTATION FOR TWO ALGORITHMS
USED ON SERIAL COMPUTERS

By Lona M. Howser and Jules J. Lambiotte, Jr.
Langley Research Center

SUMMARY

Two representative algorithms used on a serial computer and presently executed
on the Control Data Corporation 6000 computer were adapted to execute efficiently on the
Contrcl Data STAR-100 computer. Gaussian elimination for the solution of simultaneous
linear equations and the Gauss-Legendre quadrature formula for the approximation of an
integral are the two algorithms discussed. This paper describes how the programs were
adapted for STAR and why these adaptations were necessary to obtain an efficient STAR
program. Some points to consider when adapting an algorithm for STAR are discussed.
Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version
coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented
in the appendices.

INTRODUCTION

Many algorithms which are presently used on the Control Data Corporation 6000
computer and executed in a serial mode are suitable for the Control Data STAR-100 com-
puter. However, if these algorithms were converted line-by-line to the STAR coding, it is
not likely that they would make an efficient STAR program and might actually produce code
which would run inefficiently on a vector computer such as STAR. The 6000 code will need
to be adapted for STAR to produce an efficient STAR code. This paper discusses two algo-
rithms of this nature. A comparison of the 6000 coding and STAR coding of the identical
algorithm is made for two different algorithms: one for the solution of simultaneous
linear equations using Gaussian elimination with partial pivoting and the other for numer-
ical evaluation of an integral using the Gauss-Legendre quadrature formula. The paper
discusses how the 6000 program was adapted for STAR, the reasons for the adaptations,
and some factors which should be considered when adapting a program. FORTRAN
codings of the algorithms are presented in the appendice‘s. The STAR codings use the
FORTRAN language defined in reference 1.

AIDS FOR ADAPTING AN ALGORITHM

When beginning to adapt an algorithm for STAR, it is not enough to look at just seg-
ments in the 6000 coding, but it is necessary to look at the entire algorithm to get the
total picture, Some questions to pose are: What is the final result ?, What is needed at
various steps in the algorithm ?, and What is computed independent of other steps and

what is repeated?

It will be helpful to review a few definitions and terms which are important to
remember when formulating a program for the STAR computer. (For a comprehensive
discussion of STAR architecture and hardware instructions, see ref, 2.)

(1) A vector is a set of elements stored in contiguous locations in memory.
(Array and vector are used interchangeably in this discussion,)

(2) Vector timing is the time required by the central processing unit to process a
vector. It is obtained by the equation T =8 +1/c, where

T time in clocks (1 clock represents 40 nanoseconds)
S startup time, different for each vector instruction or macro
z length of vector (number of elements in the vector)
C constant depending on the type of instruction and whether the

vector elements are each stored in 32- or 64-bit words

(3) A page is a block of storage which contains data or instructions. A program is
made up of one or more pages. (See ref. 3.)

(4) A program's working set is the smallest set of pages which must be in central
memory for the program to operate efficiently.

(5) A page fault occurs when a program references a page which is not contained in
central memory; that is, it is not in the program's present working set.

(6) Paging is the process of bringing a page into central memory or releasing a
page. '

When adapting the 6000 code to the STAR code, the following factors are important:

(1) Use vector instructions. This requirement may mean reordering steps in an

algorithm so that elements in contiguous locations can be operated on or it may mean
rearranging storage,

(2) Use long vectors, If a choice is available whether to use many short vectors
or a few long vectors, use the long vectors unless the overhead to create the long vectors

is too great. This procedure reduces the effect of the startup time associated with each
vector instruction,

{3) Avoid or use sparingly coding which will generate costly vector instructions
and macros, that is, costly as compared with some of the faster vector instructions.
Refer to the most current timings available. Examples of such instructions and macros
are divide, transmit indexed list, and dot product.

{4) Avoid unnecessary paging problems by creating a reasonable working set for
the program. When working with a particular array, perform all the operations possible
with this array before working with another array. This factor will be more critical
with long arrays, but it is a good habit to form and should help reduce page faults.

(5) Investigate the feasibility of creating more answers than are really needed.
Because of the high result rate of vector instructions, it may be advantageous to use an
approach which generates a larger number of results than are needed in order to avoid
scalar computation. This idea, however, should be used cautiously. (See the discussion
in ref, 4 on parallel algorithms for tri-diagonal equation solvers.)

ADAPTATION OF AN ALGORITHM FOR THE SOLUTION OF
SIMULTANEOUS LINEAR EQUATIONS

A Langley Research Center 6000 library subroutine GELIM (see listing in appen-
dix A) uses Gaussian elimination with partial pivoting to obtain the solution of the set of
simultaneous linear equations, AX = B, where A is the square matrix of coefficients
of order n, X is a vector of unknowns of length n, and B is a constant matrix of
order nXr where r is the number of right-hand sides. The matrix A is factored
into a lower unit triangular matrix and an upper triangular matrix, (For numerical
details of the algorithm, see any numerical analysis text, such as ref. 5.) The subroutine
also contains an option for the evaluation of the determinant of matrix A.

The version of GELIM on the Langley Research Center 6000 library performs
Gaussian elimination as generally defined by operating on one row of A ata time, At
the kth step, column k is searched for the largest element; then row k and the row which
contained the largest element are interchanged. The pivot element is then used to obtain
zeroes in all positions in its column below the diagonal. This procedure requires multi-
plying, a row of A by the appropriate scalar and subtracting this product from another

row of A.

Since these row modifications are the usual way the steps in Gaussian elimination
are thought of being performed, it would seem normal that for STAR the matrix would be

stored by rows. This method of storage means that elements in one row of a matrix
would be stored in contiguous locations so a row of the matrix could be a vector and the
steps would be performed by using vector instructions.

In the present version of STAR FORTRAN, two-dimensional arrays are stored
columnwise and an optional storage arrangement by rows is not available. This column
storage means that elements in one row of matrix A are not stored in contiguous loca-
tions and modifying the matrix a row at a time would mean that few vector instructions
could be used. This fact makes it desirable to see whether Gaussian elimination can be
performed by modifying matrix A by using columns so that vector instructions can be
used. As will be shown below, Gaussian elimination can be performed by operating on
columns of the matrix,

An option to store matrices by rows may be available in a later version of
STAR FORTRAN, but when the 6000 code was modified to perform Gaussian elimination
by columns, many advantages for the column storage over the row storage appeared,;
therefore, column storage is recommended. The following section will show how
Gaussian elimination can be performed by using vector instructions when the matrix is
stored by columns and will identify these advantages. The section entitled "Row Storage"
shows the sequence of steps performed in the row storage which is identical to the pres-
ent 6000 algorithm.

Column Storage

Gaussian elimination can be performed by modifying one column of the matrix at a
time. This is done by a reordering of the operations from the usual row operations.
Accomplishing the triangularization of mairix A by performing the work on columns
makes efficient use of STAR and does the identical arithmetic normally done when per-
forming the work on rows,

The kth step of the triangularization can be performed as shown below, where n
is the number of equations and r is the number of right-hand sides. All references to
the kth column refer to column entries below the diagonal.

(1) Divide the kth column of A by the a;; element and store in the kth column,

This is a vector divided by a scalar:

a;
_ ik i =
aik_akk {i=k+1...n

{2) Multiply the kth column by the a4 element and subtract this result from the
jth column. This is a vector multiplied by a scalar and then a vector subtract:

aij = aij - aikakj (i =k+ 1: A n)

(3) Repeat the sequence of vector instructions in step (2) for the columns of
A (G=k+1,.. ., n).

(4) Multiply the kth column of A by the bkj element of B and subtract this
result from the jth column of B. This is a vector multiplied by a scalar and then a
vector subtract:

bjj = byj - 2jkbkj (i=k+1,...n)

(5) Repeat the vector instructions in step (4) for the remaining right-hand sides
of B (j=1,2,... r).

{6) Repeat steps (1) to (5) until the triangularization of matrix A is complete
(k=1,2,., ., n-1).

Often a subroutine for the solution of simultaneous equations requires the user to
append the right-hand sides to the original matrix. The column storage arrangement
allows the right-hand sides to be done as separate vector instructions without having to
append the right-hand sides to the original matrix. This arrangement is less cumber-
some for the user since the right-hand side can be a separate array.

GELIM uses partial pivoting which means that rows will need to be interchanged at
times, At the kth step, column k is searched for the largest element and the row con-
taining the largest element and the kth row are interchanged. The column search to find
the largest element can easily make use of vector instructions, but the row interchange
presents a problem. Elements of rows will need to be interchanged and none of them
will be stored in contiguous locations. Not only are they not contiguously stored, but for
a very large matrix a column could use one or more pages, For a large matrix it is
unlikely that a program will be allowed a working set large enough to contain the entire
matrix. This situation would mean that the row elew.ents to be interchanged would be on
separate pages and would have to be brought into and then out of core only to reference
two elements on the page, Then when the column modifications are performed, the same
pages will need to be brought back into core again. This procedure would be extremely
inefficient.

A form of indexing could be set up to achieve row interchange, but it would need
one of the more time-consuming instructions (transmit indexed list) and the referencing
across page boundaries would still be present. No vector instruction can help perform
the interchange efficiently; thus, a scalar interchange will be just as efficient.

The possible paging problem can be alleviated by not interchanging an entire row
at one time as it is performed on the present 6000 version. At the kth step when the
largest element in column k is found, interchange the two elements only in column k.
When working with the jih column, both coiumn k and column j are needed. Both of the
elements which need interchanging are in the jth column which will be in the program's
working set at that time, Therefore, before beginning the operations on the jth column,
interchange the two elements. In this way, the page or pages containing that column will
need to be brought into core only once per step of the algorithm.

The subroutine also computes the value of the determinant of matrix A which is
equal to the product of the elements of the diagonal of the triangular matrix. In the
6000 version, the product is computed after the triangularization is completed. For the
STAR, this computation presents a similar situation as the rows interchange; the diagonal
elements may be on separate pages and are not stored contigunously. Therefore, vector
instructions cannot be utilized. The product will be scalar mulfiplication, but after the
kth step has been completed, the partial product can be formed by using the diagonal ele-
ment of column k while column k is still in the program's working set. This grouping of
row interchange, triangularization of the matrix, and evaluation of the determinant should
create an efficient working set for the program with a minimum of paging.

The remaining task of the subroutine is to perform the back substitution. Back
substitution generally uses the dot product of a row and the solution vector. This method
is used on the 6000 version, but presents problems for STAR column storage since it
uses the costly dot preduct macro and references elements of one array by rows and
references elements of the other array by columns., This problem can be eliminated by
reordering the steps needed to perform back substitution and all the work can be per-
formed on columns,

The steps to find the kth unknown by back substitution by using vector instructions
but not using the dot product are as follows:

s
(1) A scalar divide is always necessary, bkj = a—kJ-. This step obtains the kth
kk

unknown for the jth right-hand side and stores the unknown in the right-hand side vector.
(2) Multiply column k of A by the kth unknown obtained in step (1) and subtract

this result from the jth eclumn of B, This is a vector multiplied by a scalar and then a
vector subtract:

bl] =bl] - alkbk] (1 = 1, 2, . . ony k - 1)

(3) Steps (1) and (2) are repeated for all the right-hand sides (columns of B)
(i=12 ... r.

{4) Steps (1), (2), and (3) are repeated for all the unknowns (k=1n, . . ., 2, 1),
When k=1, step (2) is omitted,

Row Storage

The way of performing the steps in Gaussian elimination as commonly seen in texts
is by operating with rows, The elements in one row would be stored contiguously and
the triangularization of matrix A would make efficient use of vector instructions.

To make the triangularization most efficient, the right-hand sides must be appended
to the matrix A for row storage. The length of the longest vector used would be
n+r -1 where n is the number of unknowns and r is the number of right-hand
sides, K a separate array is used for the right-hand side, two identical vector instruc-
tions would be needed for each operation, one of length n and one of length r. This
method would be inefficient because the startup times would be multiplied by a factor
of 2and f r is 1, it would mean using vector instructions of length 1. Appending the
right-hand side is a disadvantage in that it is awkward for the user.

Step k of the triangularization when the matrix is stored by rows is as follows:
(1) Perform a scalar divide, a5y /akk and store in A5y

(2) Multiply row kof A by a;. and subtract from the ith row. This is a vector
multiplied by a scalar and then a vector subtract:

aij = 34§ - 2ikIkj (i=k+1..,.,n+r)

(3) Repeat steps (1) and (2) for all rows {i=k+ 1, . . ., n).

(4) Repeat steps (1), (2), and (3) for all columns until the triangularization is com-
plete (k=1,2,. .. n-1).

The row interchanges necessary for partial pivoting are very easy when the matrix
is stored by rows, but the column search will be scalar operations. In addition, there
will be no way to avoid possible paging problems for a large matrix during the column
search. The elements on each row of the column may be on separate pages, but the
search has to be completed before any row operations can begin,

The determinant evaluation could be performed the same way as in the column
storage, after a step in the Gaussian elimination is completed., The pages for a large
matrix would not have to be brought in only to get one element for the evaluation of the
determinant, but the information would be used while the page was still in memory.

When performing the back substitution, if the matrix is stored by rows, there is no
way of using the scheme devised to eliminate the need for the dot product macro. The

back substitution references a row of the matrix and a column of the right-hand side, Tg
be able to use vector instructions, a vector would need to be created which would contain
the elements in the column. This method would be expensive and inefficient, and it is
likely that the vector code would be no betier than the scalar code. Either would be
inefficient here, because of the referencing of a row and a column,

Table I summarizes the comparison of the two storage arrangements at the various
steps in the algorithm. The column storage is more advantageous for STAR than the row
storage arrangement,

TABLE I.- COMPARISON OF ROWWISE AND COLUMNWISE
STORAGE OF MATRIX

Step Rowwise Columnwise

Column search Sealar; no way to avoid Vector
possible paging problems

Row interchange Vector: easy Scalar: can avoid possible
paging problems

Triangularization Vector: usual way it is done | Vector: with steps reordered

Back substitution Dot product maero: costly, | Vectors: columns only, no
referencing row and col- dot product, more efficient
umn, possibly not
vectorizable

Determinant evaluation |Scalar Scalar

Treatment of right-hand | Must be appended to matrix | Can be separate variable and
sidesg for efficient vector use still use vectors efficiently

Flow Chart

Subroutine GELIM was adapted for use on the STAR computer by using the same
numerical method that was used on the 6000 computer. The matrix is stored by columns.
By reordering computational steps, vector instructions can be used and a reasonable

working set for the program established. Figure 1 shows a flow chart of the 6000 and
STAR versions of the algorithm,

6000 MATRIX TRIANGULARIZATION

back
substitution

elimination.

-

=
Multiply eol j
by cel k of A
B35k
i=k+l,...,4n

J=a+1 No
20 to next
column

Is
this last
right~hang
side?

Is
triangular-
ization

complete?

Determinant

Determinant
#

Ppx

An asterisk denotes use of vector instructions,

STAR
k=1 k=1
*
Search col k Search col k
for max for max —
element; amk element; amk
Interchange Interchange
rov k and elements
row m of S and =2
A and B mk kk
. _ Obtain col of *
i=k+1 pivats
o = ik
oAy
i=k+1l,...,n
Obtain pivet
s, = ik {
ik B
* J=x+1
Multiply row k of A, B by *
pivot and subtract from Interchange
Tow i _— elements -
=a. -a, & =k+l,...,0
5% ey o, el e,
bijzbij‘nikbk.j J=1l,.. T +
) *
MulL)p];; eol kK
by —aak‘j element
i=1 42 B0 ™Mk
Bo to i=k+1,...,n
next row
Is Mo [d=23+1
this last go to next
Is column?
column
k=k+1 triengular-
gc to next izaticon
column complete?
k=k+1 Go to
go Lo next back
solum aubstitution
Evaluate
determinant Interchange
L e @leientsa
= T 8 b and B
g1 k3)

Figure 1,- Flow chart of 6000 and STAR version of segments of Gaussian

ubstitution STAR

b =
B o= o k=n
nl a
nn
J=1,...,r
]f
; =1 —
k=n-1
)
b
: obtained? By © Ei'd' .
aineds
J=1 - k
Dot product
aun=h By b _
kJ 174 *
I=k+1i,...,n =
by By ok ke
1i=1,..,k-1
]
sl
b = 2=
Kooy
right—hand J=3+1
sides done?
All Yo
right-hand _
sides done? i=i1+1
kzk-1
Yes
All .
unknowns Q _
obtained? k=% -1
Yes
END

Figure 1.- Concluded.

Appendix A contains coding of the versions of the algorithm. The 6000 version and
the STAR version coded in 6000 FORTRAN and in STAR FORTRAN are included. The
calling sequence of the subroutine remains the same and no additional storage was
necessary.

Additional Comment

An additional interesting fact was noted when the STAR version of subroutine
GELIM was executed on the 6000 computer., The STAR version ran faster than the
6000 version; as a result, there was about a 10-percent decrease in execution time.

ADAPTATION OF A NUMERICAL INTEGRATION ALGORITHM

Subroutine GLEGEN (see listing in appendix B) uses the Gauss-Legendre quadrature
formula to evaluate simultaneously an array of integrals

b
uf £ (x) dx k=12...N)
a

where N is the number of functions, This subroutine is an example of the manner in
which vectors rather than single variables can be used on STAR. As in the preceding
example, the sequence of instructions is not the same as in the 6000 version. The subrou-
tine subdivides the integration interval (a, b) into NQ panels and the Gauss-Legendre
quadrature formula is applied to each panel by using a 3- or 10-point formula. The
resulting integral I is

NQ@ NP
I = A z z r i (Py) k=12 ... N
j=1 i=1
where
f)e function
NQ number of quadratures or panels
NP number of points per quadrature

p; = 1j + Axi (where lj is the lower limit of integration for quadrature j)

Ty weights for the point formula used

11

X. abscissas for the point formula used

b-a

A=—N,-Q'—

(For a complete discussion of the Gauss-Legendre quadrature formula, see any numeri-
cal analysis text, such as ref. 5.}

The 6000 version of the subroutine obtainsg the first point in a quadrature, evaluates
the function at that point, multiplies the function by the appropriate weight, and adds the
product to a sum. If continues in the same manner until all the points have been evalu-
ated and used in that quadrature; then the process is repeated for the remaining quad-
ratures until the integral has been evaluated over the desired range. The sum is then
multiplied by the appropriate delta to obtain the value of the integral.

Looking at this sequence of instructions shows that much of this work is actually
computed independently. The STAR version takes advantage of this. All the information
required to compute the points is known sc all the points for all the quadratures can be
computed to form a long array. This array can be passed to the subroutine to evaluate
the functions and a savings can be obtained by using vector instructions to evaluate the
functions, This routine will now return an array of function values. All the weights are
known so an array can be formed which contains the weighis for all the quadratures.

The remaining task is to multiply the weights by the functions and sum the results. This
computation can use the dot product macro; even though it is costly compared with most
vector instructions, it is less expensive than a vector multiply followed by scalar adds.
This formulation requires the use of the dot product only once. A scalar multiply of the
sum by the appropriate delta completes the integral evaluation,

The weights and abscissas for each quadrature are identical; therefore, the length
of these arrays in the 6000 version is equal to 10 for the 10-point formula. A version of
the subroutine using short vectors could have been formed. The STAR version could
have used vector instructions and computed results using one quadrature at a time with
the same array of weights and array length as in the 6000 version. Computing the resuits
one quadrature at a time means that the startup time associated with each vector instruc-
tion and the startup times used in the function evaluation also would be multiplied by the
number of quadratures used. Depending upon the nature of the function, this amount of
time could be significant, '

Vector transmits could be used to create a long vector of weights which is really a
repetition of the short vector. The long vector is

q repetitions

e

- N\
(rl, Tgs e v oy Ty Ty Tgp e o oy Trye o /Ty, Ty o o o rm)

12

where m depends upon the quadrature formula and ¢ is the number of quadratures.
The cost of setting up this vector seems to be minimal when compared with the multipli-
cation of the startup times which would have prevailed in the short-vector version,

A problem of this type (excluding the function evaluation) would probably not pro-
duce a significani paging problem. All the arrays are one dimensional and will most
likely not be extremely long. However, consideration should still be given to the working
set which is created. Currently, there is a tendency to initialize variables at the
beginning of the program. The vector of weights could be created at the beginning of
the program, but they are not used until after the functions are evaluated; therefore, the
vector is not created until just before it is used. Forming the vector of weights and then
immediately using them results in less paging; therefore, a better working set is created
than would have been created by initializing the vector.

Subroutine GLEGEN was adapted for the STAR computer by using the same numeri-
cal method as was used on the 6000, An efficient STAR routine was obtained by using
long vectors and recordering the sequence of instructions, Figure 2 shows a flow chart
of the 6000 and STAR versions,

Appendix B contains the coding of the two versions of the algorithm. The 6000 ver-
sion and the STAR version in 6000 FORTRAN and STAR FORTRAN are included. Notice
that the calling sequence of the STAR version reflects the use of long arrays in that more
working space is needed.

CONCLUDING REMARKS

Two algorithms used on the Control Data Corporation 6000 computer were adapted
for use on the STAR computer, This adaptation required a rethinking of the flow of the
entire problem., Array variables are used where the 6000 code used a single-value
variable and the steps in the algorithm are not computed in the same order for the two
versions. This reordering of steps and changes in variable assignments allow vector
instructions to be used and a reasonable working set can be established for the program;
thereby efficient use of the STAR computer and some implied improvements for the
Control Data Corporation 6000 computer are made.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., February 20, 1974,

13

14

6000 Numerical Integration STAR
Get A Get A
interval interval

!

k = quadrature

Compute all*
points p.
for sl1 &
quadratures

|

Get peint By

l

Evaluate
function at
Py f=f(pi)

'

Multiply f by
waight and
sum integral
S=S+rif(p i)

All
points in
quadreture
done?

this last
gquadreture!

[|

Eveluate*
function st

all poin‘bs=fi

Create long®
vector of
welghts vy

Dot product *

i=1+1

5 = S*A

|k =k + 1

Figure 2,- Flow chart of 6000 and STAR versions of Gauss-Legendre
quadrature formula for numerical integration, An asterisk
denotes use of vector instructions.

APPENDIX A

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM FOR THE

SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS

6000 Version in 6000 FORTRAN

SURROUTINE GELIMOA,NGR, NEHS MAXN, IFIVUT » 10P UETERM TSCALED GELIMUUL

DIMENSTON A LHAKN MAXN] ¢ 3¢ MAXNNEHS) TPTVOT(MAXN] LELLMOU 2

o ACMAXNGMAXN]T = SOQUARE MATRIA :JF COEFFICIENTS(A IS DESTROYEU) GELIMwO3

z N o= MUMHEE OF RO«S AND SOLUMNS IN A GELIMUO4

z BIMAXM, MRHS) = WATRTX CF CONSTANTS{REPLACED 3Y S50LUTIGHK #MATRIXD GELIMOLS

z MRHS = NUMBER OF (0LUMNS IN B GLLIMLOG

. MAXN = MAXTHMUM NUSBER OF ROWS AkD COLUMNS In A GELIMOUT

z IPIVUT(MAXNY = KFLUDRD OF 20W INTERCHANGES GEL IMUOG

z IOP - TNP=1,EVALUATE DETEFAINANT. TOP=G.SKIP DETERMINANT EVALUATION VNE

: DETERM - GIVES VALUL OF UETEXMINATIGETERM=(I0¥%1CLI** ISCALE*DETLAM] G1L0

Z ISCALE = SCALE FACTOR COMPUTEW By SUsHGUTINE [N OETERM EVALUATION GELIMILL

: TO KEEP NETERM wlTHIN THE FLUATING POINT wORD 51ZE UF THE oLZ

T COAPUTER GELIMUL S

SIGN=1.0 GELIMO20

N 35 T=1,M LELIMC3O0

35 IpIvoTtEL L) =1 GELIMULD

5 1SCALE=C GeL IMG U

6 R1=10.,0%*%100 GELIMOLU

7T R221,0/R1 GELIMOTO

10 DETERM=1.D GELIMG4L

NML=N-1 GeLIMOYG

IF(MMELEG.O) G T 1000 GELIMLLO

CakkgRE INGD LARGEST PEMATNING TEPM TN I-TH CoLUMN rd& PIVOY GelLIMiiG

D0 200 I=1.mnML ' LELIMLLO

8iG=0. GELIML 30

NI 50 K=1,N GELIMLaU

TERM=AAS{AIK,1)) GEL{MLau

IFLTERM=—RIGIS0, 50,32 GELIMLOGU

3) RI1G=TERM GELIMITY

L=K GELIMIYG

57 CONTINUE GELIMLISGC

IPIVOT(T ¥=L GELIMZUG

TEIRIGIBL,6G.R] GELIM21U

50 DETERM=Co0 GELIMZeG

RETUPN LelLIMZ25

80 IFET~L1904120:90 GELiMz30

wkaEnESWAP ROWS OF A ANL B SET IPIVRT(JI =k, GEL iM240

a0 SIGN==S TGN GELEM250
DO 100 J=1.N

TEMRL=ALT,H) GELIMZTU

ALT,d1=Aa{L.J) GELIM240L

102 FlL+JI=TE¥PY GEL IM2YC

DO 101 J=L.NOHS GLLIM3OL

TEME2=R(1.J) GELIMALC

ALT.Jb=Ri{L.J} GELIM32U

101 ALy J1=TE®P2 GELIM330

i20 CONTINUE Gl IM340

whxbaaxSTORE PIVOT IN A{T.J3. MULTIDLY A AND B HY PIVOT. GELIM3LHY

1P1=T1+1 GELIM300

NN 31 17=(P1.N GELIM3TU

ACIL I d=ACET 137001, 1) GELIM34U

X3=ALLT.1) GELIM340

DO 32 x=IPLl.N GEL IM&uQ

15

APPENDIX A — Continued

32 A{IT KI=ALIT KI-X3%A(T,K)
D 33 K=1,NRHS

33 BEIT.KI=R{TI K)-X3*B(],.K]

31 CONTIMNUE

260 CONTINUE

-

TF{ICPLEQLOIGE T 221

;*****SCALE THE DETERM INANT

DO 122 1=1.,M

PIVATI=A{T.])
1005 IFUABS(NETER™)-R1)1G3u,10G10,1010
1010 OETERM=DETERM/R]

ISCALE=[SCALEY]

IFIABS{DETERM)I =R 1ILGE0»1U2041020
L0200 DETERM=NDETERM/R]

1SCALE=TSCALE+]

G0 TO 1960
1030 TFIABSIDETERMI=-RZ2IL0400,104Us1ub0
LD4s DETERM=DETCAM®R]

ISCAIE=TISCALE-L

TF{ABS{DETERM)—RZ1105G, LGS0, 1060
1650 DETEPM=DETE2M=xRL

TSCALE=TSCALE-L
1060 IF(ABSIPIVOTYII=-R1ILIO90.1070.,1070
1070 PIVOTI=PIVOTI/R]

ISCALE=TSCALE+]

IF(ABS{PIVOTII-R11320.1080.1080
1080 PIVOTI=PIVOTI/RL

ISCALE=ISCALE~L

GO TO 3206
1092 TFLARS(PIVOTII-R2)12G00,2000,320
70CC PIVOTI=PIVOTI=R]

ISCALE=1SCALE-1

[TF(ABSIPIVOTINI-R2)12010,2010,320
2010 PIvOTI=PIVYDTIXR]

TSCALE=ISCALE-T

320 DETERMz=DETERM%PIVOT]

L2z CONTINUE

\..
*

*¥Kk#XPERFORM GACK SUBSTITUTION

221 CONTINUE

DO 57 IC=1+NRHS
BiNs TCI=BUIN, ICH/ AINWN]

57 CONTINUE

00 &) KK=]1,NM1
I=N=-KK
Tl=1+1
D0 61 J=1.NRHS
SuM=BiT.J)
DO 62 K=11.N
62 SUM=SUM-A(TI,K)*B{K,J}

61 BLI+Jl=SUM/ALL,T)

DETERM=DETERM*S [GN
RETURN

LOO0 IF{A(L+10,EQ.0) GO TO 60

DO 1500 J=1.NRHS

1500 BULly,Jd1=B{l+J)/A(1,1})

16

OETERM=A(1,1)
RETURN
END

GELIM410
GELiIMazZy
GELIM43{
GEL IMa4()
GeL IMasp
GELIM&aQ
GELIM4FJ
GelLIMasC
GelLiMavo
GELIMSO0
GelL IM5LG
LELIMS20
GELIMBSG
GELIMSSU
GELIMSLG
GELIMESLE
GELIMSBIO
GELIMS530
GELIMS3{
GELIMOJIU
GELIMG LG
GELIMO6Z20
GELIMG 3L
GELIMo4dy
GLLIMOS0
GELIMOOQ
GELIMuTG
GeL 1Mbg 0
GELIMEIU
GELIMIOU
GELIMTLQ
GELIM7 29
GELIMT3U
GELIMTI4G
GELIMZ5L
GELIMZbA
GELIMTIQ

GELIM7S0
GEL IMT90
GEL IM800
GELIME10
GELIMB20
GEL1IM830
GEL IMB40
GELIMB5U
GELIMBSO
GELIMBTC
GELIMBBO
GEL IM900
GELIM®9LO
GELIM920
GELIM930
GELIM940
GEL1IM950
GEL IM960
GELIMSTO
GEL IM9T5
GELIM980
GEL IM990Q
GELIM995
GELM1000

APPENDIX A — Continued

STAR Version in 6000 FORTRAN

SUBROUTINE GELIMLA¢NsB+NRHS, MAXN, IPIVOT ,10P,DETERM+ISCALE} GIL&DO10
DIMENSION A(MAXN MAXN) «BLMAXNyNRHS) »IPIVOTIMAXN) GIL&LDLO
% A{MAXN, MAXN) = SQUARE MATRIX OF COEFFICIENTS({A IS DESTROYED) GIL60030
c N = NUMBER OF ROWS AND COLUMNS IN A GILH0040
ot BIMAXN,NRHS) = MATRIX OF CONSTANTS{REPLACED 8Y SOLUTION MATRIX) GIL600S0
Z NRHS = NUMBER OF COLUMNS IN B GIL600S0
< MAXN = MAXIMUM NUMBER OF ROWS AND COLUMNS IN A GIL&B0OOTO
z IPIVOT{MAXN) = RECORD OF ROW INTERCHANGES GIL60080
C IOP - 10P=1,EVALUATE ODETERMINANT. [DP=0Q, SKIP DETERMINANT EVALUATIOGILA0090
G DETERM - GIVES VALUE OF DETERMINATIDETERM={ 10**10G) **ISCALE®DETERMGIL60LOD
= ISCALE = SCALE FACTOR COMPUTED BY SUBROUTINE IN DETERM EVALUATIGN GIL6O11O
z TO KEEP DETERM WITHIN THE FLOATING POINT WORD SIZE OF THEGELGOLZ2D
z COMPUTER GIL60130
10=0 GIL60140
SIGN=1.0 GIL&A0LS0
00 3 [=1.N GIL&6DLOHO
3 IPIVOT(IN=1 GIL6OLTO
5 ISCALE=Q GIL&018C
5 R1=10.0%#*]100 GILa0l90
7 R2=1.0/R1 GIL60200
10 DETERM=]1.0 GIL60Z10
NMl=N-1 GILG60220
IF (NM1.EQ.D} GO TO 600 GIL60230
NPL=N+] GlLo0240
SaskkkEIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT GLIGO25U
D0 200 [=1sNM1 GIL6C250
BIG=0. GILe0270
D0 SO0 K=xI4N GIL60280
TERM=ABSU{AIK.L}} GIL&60290
IF{TERM=-BIGIS0N 50,20 GIL&G30D
30 RIG=TERM G1lL&G310
=K GIL60320
50 CONTINUE GIL&603IIO0
IPIVOTI(I =L GIL60340
[F{B8IGIB0+60,80 GIL&6G3SD
&0 DETERM=0,0 GIL60360
RETURN GIL&D370
80 IF{I-1190:,120,90 GiL&0380
~wkxkk [NTERCHANGE ELEMENTS IN COLUMN I ONLY
0 SIGN=~SIGN GIL60400
TEMPL = All,I} GIL60410
A{TE)=ALL.T) GIL60420
AlL+1)1=TEMP] GIL60430
120 CONTINUE GIL60440
~skk6xSTORE PIVOT IN A(I,J}. MULTIPLY A AND B BY PIVOY, GIL60450
IP1=1+1 GIL6O#60
~xxkx % 0BTAIN COLUMN OF PIVOTS
DO 128 X=IP1.N GIL&60470
120 AMKL)}=A(Ks1)/7ALT,T) GILe0480
~xwxka [NTERCHANGE ELEMENTS ONLY IN COLUMN J
D0 132 J=1.NRHS GIL&60490
TEMPL= BIl1.4) GIL60S500
BiT+J)=B{L.Jd) GIL60510
BiLe JI=TEMPL GIL6CS20
DO 130 K=IP1l.N GIL60O530
130 B8iK,J1=BiKsJ) ~ A{K.!}%B{T,J} GILB0540
132 CONTINUE GIL60550
~ewakk [NTERCHANGE ELEMENTS ONLY IN COLUMN J '
DOL40D J=IP1.N GIL&0560
TEMPY1 = All.J) GIL60570
AMI+d)=AlL S} GIL6C580
AlL +JI=TEMP] GIL&LSI0
pol3s K=IP1,N GIL60600

17

APPENDIX A - Continued

135 ALK J)=A(K, J)~ALKsEI*AL{TI) GIL60610
140 CONTINUE GEL60620
IF {10P.E0.0) GO TO 200 GIL60630
- : G1L60640
cexxk4SCALE THE DETERMINANT GIL60650
c 6IL50660
PIVOTI=A(I.T) GIL60670
1005 IF{ABS(DETERM)I~R11103041010,1010 GILb0680
1010 DETERM=DETERM/R1 GIL&069C
I SCALE= TSCALE+] © GIL80TOO
1F{ABS(DETERM)~R111060,1020,1020 GIL607 10
1020 DETERM=DETERM/R1 GIL60720
ISCALE=ISCALE+L ' GIL60T30
60 TO 1060 GIL60T&D
1030 IF(ABSIDETERM)-R2)1040+1040,1060 GIL&0TS0
1040 DETERM=DETERM#R] GIL60T60
ISCALE=ISCALE-] GIL6077C
IF(ABS(DETERM}-R2)1050.1050,1060 GIL60T80
1050 DETERM=DETERM®*R] GIL60790
[SCALE=1SCALE~1 GIL&0800
1060 IF{ABS(PIVOTI)=R1)11090,1070,1070 GIL60810
t070 PIVOTI=PIVOTI/R1 61L60820
ISCALE=ISCALE¢1 G1L60830
IFLABSIPIVOTI)-R11320,1080, 1080 GiL60840
1080 PIVOTI=PIVOTI/R1 GIL60850
1SCALE=ISCALE+] GIL60860
60 TO 320 G1L60870
1090 TF(ABS(PIVOTI)=R2)2000,2000,320 6IL60880
2000 PIVOTI=PIVOTI*RL’ GIL60890
TSCALE=ISCALE-1 GIL6090O
IF(ABS({PIVOTI1-R2)2010,2010,320 GIL6D9 1D
2010 PIVOTI=PIVOTI#R} GIL&0920
ISCALE=ISCALE-1 GIL60930
~#s#4%0BTAIN PARTIAL PRODUCT FOR DETERMINANT
320 DETERM=DETERM#PIVOTI GI1L60940
IF (I.NE<NM1} GO 7O 200 GIL6UI50
IF {1D.EQ.1) GO TO 200 GIL60960
PIVOTI=A{N.N) GIL609TO
1D=1 GIL60980
60 TO 1005 GIL60990
200 CONTINUE GIL61000
: GIL610LO
Texex¥PERFORM BACK SUBSTITUTION GIL61020
340 CONTINUE GIL61030
DO 450 KK=14N GIL61040
K=NP1-KK GIL61050
CexxaSCALAR DIVIDE
DO 430 J=1.NRHS 61161060
BIKedI=B(KysdI/AIKK) GIL61070
IF {K.EQ.1} GO TOD 430 GIL61080
KMl1=K-1 GIL6L090
CexxksCOLUMN K BY UNKNOWN AND SUBTRACT
DO 420 I=1,KM] 6IL61100
420 B{I,J) = B(L,J) = ALI,K)* BIK,J) GIL61110
430 CONTINUE GIL61120
450 CONTINUE GIL61130
DETERM=DETERM®S [GN GIL6LL4D
RETURN GIL6L150
600 IF (A(L1,11.EQ.0) GO TQ 60 GIL6LL6D
D0 800 J=1,NRHS GIL61170
800 Bi{lyd)=BileJ)/A(1,1) GIL61180
DETERM=A (1,1} GIL61190
RETURN GILe1200
END GIL61210

18

APPENDIX A - Continued

STAR Version in STAR FORTRAN

SUBRDUTINE GELEM{AsNsBsNRHS.MAXN, IPIVOT,I0P,DETERMeISCALE) GLISOOLD
DIMENSTON A(MAXNyMAXN) « BIMAXNNRHS), TPIVOTIMAXN) GLISG0Z20
A{MAXN, MAXN) = SQUARE MATRIX OF COEFFICIENTS(A IS DESTROYED) GLIS0030
N = NUMBER OF ROWS AND COLUMNS IN A GLIS0040
BIMAXN, NRHS) = MATRIX OF CONSTANTS(REPLACED BY SOLUTION MATRIX} GLIS0050
NRHS = NUMBER OF COLUMNS IN B GLIS0D6O
MAXN = MAXYTMUM NUMBER OF ROWS AND COLUMNS IN A GLISOO070
TPIVOTIMAXN) = RECORD OF ROW INTERCHANGES GLIS0Q80

TOP = [DP=]1,EVALUATE DETERMINANT. [OP=0,S5KI1P DETERMINANT EVALUATIQGLIS0090
DETERM - GIVES VALUE OF DETERMINAT(CETERM={10%*100)**{SCALE*DETERMGLISOLO0
ISCALE = SCALE FACTOR COMPUTED BY SUBRDUTINE IN DETERM EVALUATION GLIS0L)0

TO KEEP DETERM WITHIN THE FLOATING POINT WORD SIZE OF THEGLISOLZ20

AT ERCTFER AP LI LY (LY R

COMPUTER GLISOL3D
1D=0 GLISO140
S5IGN=1.0 GLISO150
DO 3 [=1,N GLISOLlbO

3 IPIVOTC(I }=1X GLISOLTO
5 ISCALE=Q GLISOLBO
& Rl=10.0%%100 GLISOL190
T R2=1.0/R1 GLISw200
I0 DETERM=1.0 GLIS0210
NM]1=N~1 GLIS0Z20
IF {NM1.EQ.CQ} GO YO 600 GLIS0230
NPL=N+i GLISD240
Sx*vkkxF IND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOTY GLIS0250
DO 200 I=1,NM1 GLISDZe0
C GLISO0z2{Q
Z NEEGL VECTOR ABSOLUTE » MAXIMUM BECAUSE YOU ARE SEARCHING COLUMN GLIS0280
o GLISWZ290
BIG=0, GL1SO300
N0 50 K=1.N GLISO031Q
TERM=ABS (A(K.+I)})} GLIS0320
IF{TERM-BIG)50,50.30 GLIS033¢0
10 BIG=TERM GLISO340
L=K GLIS0350
50 CONTINUE GLISU360
IPIVOTII =L GLiIS0370
IF{BIG}80,50.80 GLISD380
60 DETERM=0.,0 GLISO03%0
RETURN GLISU400
a0 IFIT~-L}9D,120,%0 GLISD410
90 SIGN=-SIGN GLISO0430
THkkkk INTERCHANGE ELEMENTS IN COLUMN I ONLY
TEMP1= A(l,1I) GLISO440
Al I)=A(L. 1) GIL 150450
AlLsT)=TEMP] GLIS0460
120 CONTINUE GLISO470
CxexkxSTORE PIVOT IN All,J)s MULTIPLY A AND B 8Y PIVOT. GLIS0480
Irl=f+] GLiSC490
k&% QBTAIN COLUMN DF PIVODTS
ALIPLsN,yIl= A(IPL:N<II/ALI,1] GLISO500
CEenkx INTERCHANGE ELEMENTS ONLY IN COLUMN J
D0131 J=1«NRHS GLISO510
TEMPL= B{T.J4) GLISO520
Bll«d)=BiL,+J} GLISO530
BiL+J)I=TEMP1 GLISGS40
131 BLIPL:NLJ) = BUIPIINWJ) =A(IPL:N.I} * B(I,.J]) GLISD550
Candky INTERCHANGE ELEMENTS ONLY IN COLUMN J '
DO134 J=IPLaN GLISO560
TEMPI= A{1,J) GLISOS70
Al J¥=ALL I GLISOS580
AML+JI=TEMP] GLISO590

19

APPENDIX A — Concluded

134 ALIPLiN,JI= A(IPLINgJ} -ACIPL:N. 1% A(L,J) 6L150600
IF {I10P.EQ.0) GO TO 200 _GLIS0610
- ‘ GLIS0620
Te*skeSCALE THE DETERMINANT GLIS0630
- : , . GLIS0640
PIVOTI=ALT, 1} : 6LIS0650
1005 TFIABS({DETERM)I-R1}1030+1010+1010 , GLIS0660
1010 DETERM=DETERM/R1 GLIS0670
[SCALE=ISCALE+1 GLIS0680
{F(ABS(DETERM}-R1110604 1020+ 1020 GLIS069C
1020 DETERM=DETERM/RL GL15S0700
ISCALE=ISCALE+] GLESDTI1G
GO TO 1060 _ ' GLISO720
1030 1F(ABS(DETERM}-R2)1040, 1040, 1060 GL150730
1040 DETERM=DETERM#*R1 GLISO0T40
1SCALE=ISCALE-1 GLIS0750
IF{ABS{DETERM)-R 211050, 105041060 GLIS0760
1050 DETERM=DETERM*R1 GL1SOTT0
ISCALE=1SCALE-1 GLISO780
1060 IF(ABS{PIVOYT}-R1)1090,1070,1070 GLIS0790
1070 PIVOTI=PIVOTI/RL GLISUBOO
ISCALE=ISCALE+1 GLISO81U
IF{ABS{PIVOTI)-R1)320.1080,1080 GLIS0820
1080 PIVOTI=PIVOTI/R1 GLIS0830
TSCALE=1SCALE#] GLISOB40
GO TD 320 GLIS0B50
1090 IF(ABS(PIVDTI)-R212000,2000+320 GLIS0860
2000 PIVOTI=PIVOTI*R] GLISUBTO
ISCALE=1SCALE-1 GLIS0880
IF(ABS(PIVOTII-R2)2010,2010,320 GLIS0890
2010 PIVOTI=PIVOTI*RL GLISU900
" ISCALE=ISCALE-1 GLIS0910
“%#k#&DBTAIN PARTIAL PRODUCT FOR DETERMINANT
320 DETERM=DETERM*PIVOT! GLIS0920
If [1.NE.NML) GO TO 200 GLIS0930
IF (ID.EQ.1) GO TO 200 GL1S0940
PIVOTI=A(N,N} GLIS0950
D=1 GLIS0960
GO TO 1005 GLIS09TO
200 CONTINUE GL150980
c ~ GLIS0990
S#suk«PERFORM BACK SUBSTITUT ION GLIS1OuOD
340 CONTINUE GLIS1010
DD 450 KK=1.N GLISL020
K=NP1-KK 6LIS1030
CuxkkaSCALAR DIVIDE
D0 430 J=1,NRHS GLESLO40
BIKed)=B{KyJ /ALK KD GLIS1050
IF {K.EQel) GO TO 430 GLIS1060
KM1=K-1 . GLIS1070
TaaskxCOLUMN K BY UNKNOWN AND SUBTRACT
BUL:KMLs Jd= B{1:KMI,J) =A{L:KML.sKI® B(Kyd) GLIS1080
430 CONTINUE GLIS1090
450 CONTINUE GLIS1100
DETERM=DETERM%S I GN GLIS1110
RETURN GLIS1120
600 1F {A{1,1).E0.0} GO TO &0 GLISL130
BULe1:NRHS)= BILleliNRHS)/A(L41) GLIS1140
DETERM=AL1,1} GLESLL50
RETURN , GLES1160
END GLESLLTO

20

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM

APPENDIX B

FOR NUMERICAL INTEGRATION EVALUATION

6000 Version in 6000 FORTRAN

SUBROUTINE GLEGEN(SUM,ICODEA+Bs FXsFOFX s NFXNQ,NPQ) GLEGN
CREEk ek k ke ke kkk ko k kR k ks ke Sk kk ks bk kb ke ko x GLEGN
o # GLEGN
e PURPOSE : TD COMPUTE THE INTEGRALS, F{I) OF X = DX FRQOM * GLEGN
o A TD B USING THE GAUSS—-LEGENDRE QUAORATURE * GLEGN
ok FORMULA. * GLEGN
Tk * GLEGN
o USE: CALL GLEGEN (SUMsICODE,AsBosFXeFOFX NFXyNOsNPQ)I* GLEGN
ok * GLEGN
Z* PARAMETERS: * GLEGN
Tk SUM THE ARRAY FOR THE VALUE{S) OF THE INTEGRAL{S) * GLEGN
Tk * GLEGN
ox 1CODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE * GLEGN
ol = 0, NORMAL RETURN * GLEGN
Tx = L. NFX NOT PROPERLY SPECIFIED * GLEGN
ol = 2+ NPQ NOT PROPERLY SPECIFIED (NDOT 3 OR 10J * GLEGN
g = 3, NO NOT PROPERLY SPECIFIED * GLEGN
o 4 * GLEGN
oL THIS PARAMETER SHOULD BE TESTED UPON RETURN * GLEGN
T BY THE CALLING PROGRAM * GLEGN
ot ® GLEGN
Te A LOWER LIMIT OF INTEGRATION * GLEGN
T * GLEGN
oL B UPPER LIMIT OF INTEGRATICON * GLEGN
o* * GLEGN
oy) FX THE NAME OF A USER SUPPLIED SUBROUTINE WITH * GLEGN
o ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS® GLEGN
Cw IT MUST BE DECLARED AS EXTERNAL. * GLEGN
o * GLEGN
ol FOFX THE ARRAY T0O STORE THE VALUES OF THE FUNCTIONS* GLEGN
ce * GLEGN
Tk NFX AN INTEGER, THE ND. OF FUNCTIONS TD INTEGRATE * GLEGN
nE * GLEGN
tx NQ AN INTEGFR, THE NUMBER OF QUADRATURES ® GLEGN
Tx * GLEGN
cx NPQ AN INTEGER, THE NO. OF POINTS PER QUADRATURE * GLEGN
ol IT MUST BE 3 OR 10 * GLEGN
ol ‘ * GLEGHN
& REQUIRED ROUTINES: NONE * GLEGN
o . * GLEGN
£* SOURCE/IMPLEMENTER: COMPUTER SCIENCES CORP./ G. We HAIGLER * GLEGN
T * GLEGN
L% DATE RELEASED? NOV. 14,1972 * GLEGN
L * GLEGN
T LATEST REVISION: NOV. 15,1972 * GLEGN

o=

21

APPENDIX B — Continued

Pk ok kR dok Rk ok ok K ek AR K t#ttt**i*#t###t! UHARGREE Rk EE ke sk ek GLEGN 44

"~

-~
-

-
-

£t

DIMENSION UL(31+U20001sRLI3)+R2LL0OI4ULLI)I4RIL3) +SUM(L)FOFXL1)

EQUIVALENCE {(ULEL)UlL)) (U2{L)oULS) CRLELISRELIDLIR2(L)4RI4})

GLEGN 47
GLEGN 48
GLEGN 49
GLEGN 50
GLEGN 51

GATA UL/ 11270166537 9259445+.88T7298334620742/+U2/.013046735T414L%sGILEGN 52
La 06 T468316655507 +.1602952158504884.283302302935376,+.42556283050918GLEGN 53
2544 5744371694908 16+.T1669T69T064624,4.839704T841495124.932531683344GLEGN 54
34934.9869532642585867R1/G2TITTITIITTITTB e 4444004444544 4%4,a 2TTTTTGLEGN 55

STTTITTITTTIB/+R2/.0333356T2154344,e0T4T256T45752914.109543181257991,

GLEGN 55

54 1346333596549984+414T76211235737T4.147762112357377,.134633359654996GLEGN 57

65844109543181257991,.,074725674575291,.033335672154344/

fcope = 0
IFINFXeLELOJICODE = 1
IFINCaLESLOQ}ICODE = 3
IFINPQ.FQ.3)GO TO 5
IF{NPQsNE-.1OIICOOE = 2
5 IF{ICODE.GT.OIRETURN
J=3
IF {NPQ LEQ. 3) J=0
DELT= §{B-AY/FLDAT{ND}
DO LO T = LoNFX
10 SuUMil) = 0.0
DO BO K=1sNQ
XI = K - 1
FF = A # XI*DELT
DO 80 L=1+NPQ
Uu=U(J+L I *0ELT «FF
CALL FX(UUFOFX}
FACT=R{J¥L)
DD 80 JB=1sNFX

BO SuM{JBl =FOFX(JBI=FACT+SUM{JB}
DO 100 II=1.NFX

100 SUMLIIY = SUM(IIM*DELT
RETURN
END

STAR Version in 6000 FORTRAN

GLEGN 58
GLEGN 59
GLEGN 60
GLEGN &1
GLEGN 62
GLEGN 63
GLEGN &4
GLEGN 65
GLEGN 66
GLEGN 67
GLEGN 68
GLEGN 69
GLEGN 70
GLEGN 71
GLEGN /2
GLEGN T3
GLEGN T4
GLEGN 75
GLEGN T¢&
GLEGN 77
GLEGN 78
GLEGN 79
GLEGN B0
GLEGN 31
GLEGN 82
GLEGN 83

SUBROUTINE GLEGENS{(SUM,ICODEsAeB» FXs FOFX¢NFX+NQ.NPUsUU,FF,UDsMAXTJGLENSOOL

Chpmbombren i gkt bl ok ok kb kb kR gk dok ok ok ok ok ko k ko ko bk h kxR bk
ok *
g PURPOSE: T0 COMPUTE THE INTEGRALS, F(I) OF X * DX FROM *
L A TO B USING THE GAUSS-LEGENDRE QUADRATURE *
ol FORMUL AL *
ok 3
L USE: CALL GLEGEN (SUMsI1CODEsA+BsFXFOFXaNFX.NQ.NPQ)*
ol] *
L« PARAMETERS: *
o SUM THE ARRAY FOR THE VALUE{S) OF THE INTEGRALLIS) *
ol] *®
Lk ICODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE *
Lk = 0, NORMAL RETURN *
o = |y NFX NOT PROPERLY SPECIFIED *
E* = 2y NPQ NOT PROPERLY SPECIFIED (NOT 3 OR l0) *
¥ = 3, NQ NOT PROPERLY SPECIFIED *
) *
Le THIS PARAMETER SHOULD BE TESTED UPON RETURN *
ik BY THE CALLING PROGRAM *
T *

22

GLENS002
GLENSOO3
GLENSOD4
GLENSGOS
GLEN5QO6
GLENSOGT
GLENSQQCR
GLENSCO9
GLENSOLO
GLENSOLL
GLENS5012
GLENSQ13
GLENSO14
GLENSO15
GLENS5O016
GLENSOL17
GLENSCLS
GLENSOL9
GLENSG20O
GLENSO21

Tk
Ce
ot
“x
"k
o]
C#
o

ol 3
ol
mk
o
C#
ce
Ce
ox
ol]
te
o
G %
Sk
ol

~

g]

C#* REQUIRED ROUTINES:

o

FX

FOFX

NFX
NQ

NPQ

wu
£F

up
MAXE

% SOURCE/IMPLEMENTER:

o

2% DATE RELEASED:

ot

C* LATEST REVISICON:

= e ok o o ek ek kg o e o o ok kol Aok ol o ko e ok ok ol Aok kol kb ok ek ek

~
i)

(%]

(3]

[]

NT

APPENDIX B — Continued

LOWER LIMIT OF INTEGRATEION
UPPER LIMIT OF INTEGRATION
THE NAME OF A USER SUPPLIED SUBROUTINE WITH

ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS
IT MUST BE DECLARED AS EXTERNAL.

* % B EERRR

A TWO DIMENSIONED ARRAY YO STORE VALUES OF THE
FUNCTIONS, FOFXIMAXI NFX) IN CALLING PROGRAM

AN INTEGER, THE NQ. OF FUNCTIONS TO INTEGRATE
AN INTEGER, THE NUMBER OF QUADRATURES

AN INTEGER, THE NO. OF POINTS PER QUADRATURE
IT MUsT 8E 3 DR 10

* R R H R

ARRAY TO STORE ALL POINTS AT WHICH FUNCTION IS

EVALUATED ,ALSO STORES WEIGHTS

ARRAY OF WORKING SPACE, CONTAINS LDWER LIMIT OF
INTEGRATION FOR EACH QUADRATURE

ARRAY OF WORKING SPACEe ABSCISS5AS* DELT

MAXIMUM ROW DIMENSIONS OF FOFX IN CALLING PROG.

NONE
COMPUTER SCIENCES CORP./ Ge. Wa HAIGLER

NOV. 14.1972

*
"
%
%*
*
*
*
NOVa 15.+1972 *
*

DIMENSION UL{I3),U2010)sRLI3},R21L0V4ULL3),R{L3)SUM{L),

1 FOFX(MAXI.1

Yo

uuil hLuD{1l H.FFLL)

EQUIVALENCE {ULILYoULLE)2 {U20 04D s LRLULYLRELI)+{R2(LISRI4)}

GLENS022
GLENS023
GLENS024
GLENS025
GLENS026
GLENS027
GLENSO28
GLENS029
GLENS030
GLENSO31
GLENS032
GLENS033
GLENSO034
GLENSD35
GLENS036
GLENS037
GLENSO038
GLENS039
GLENS040
GLENSO% 1
GLENSO42
GLENS043
GLENSO4 4
GLENSO45
GLESS046
GLEBS04 7
GLE6S048
GLE6S049
GLE6SUS0
GLEGSOS51
GLE6SOS 2
GLE65053
GLE6S054
GLE6S055
GLEBS056
GLE6SO57
GLE65058
GLESS059
GLE6S06D
GLE6SO6 L

DATA UL/4L1270166537925%9+a5+8872983346207427/4U27/.013046735T41414%44GLEGS062
1+067468316655507+.160295215850488,4.283302302935376+4.425562830509108GLE65063
25++57443T169490816..71669769T064624,.839704784149512+.93253168334406LE65064%
3493,.986953264258586 /R L/ 2TTTTTTTTIITITTE 10 444444444445 444, ., 2TTTTTGLESSOGS
&TTTTTITITTIB/ R27.0333356T2154364¢.074T7256T4575291.4109543181257991,
9.13463335965499B 40 14776211235T3724414176211235737T4+.13463335965499GLEGS0GT
68.,.10954318125T99L..0747256T45T5291,+,.033335672154344/

ICODE = O

= TOTAL. NUMBER OF POINTS AT WHICH FUNCTYION wWILL 8E EVALUATED

NT=NQ*NPQ

IF(NFX.LE.OVICODE
TF{NQ.LELO)TICODE

TF{NPU.EQ.3IGD

TG0

=1
= 3
5

IFINPQeNEL10JICODE = 2
[FUICODE «GTLOIRETURN

J=3
IF {NPQ LEQ,

3

boJ=0

DELT= {B-AJ/FLOAT{NQ}
CxxxxxC OMPUYE ARRAY YO BE ADDED TO FIRST POINT IN EACH QUADRATURE

D0 20 K=L1.NPQ
J1 =K

20 UDLKY= ULJLI*0DELT

GLELS066

GLEGLS(L S
GLE&S069
GLESSOTO
GLE650T1
GLE&SDT 2
GLEGSOT 3
GLEGS507 4
GLEGS0TS
GLE&SOTS
GLEGSOT?
GLEGSO0TSH
GLESSO079
GLEGS08C

GLE6S081
GLE6S032
GLE6S08 3

23

APPENDIX B - Continued

Cxe#%««COMPUTE FIRST POINT IN EACH QUADRATURE

[}

[N}

[

ol
[
Tk
ot
ol
ol
%
ol]
o
o]
L
ol
ol]
o
oL
ol
ok
ol
o
o)]
o
T%
~k
Tx
ol |
L

TE

24

B0 30 K=1+NO
XI =Kk-1
30 FFI{K)} =4 + XI*DELT
CREATE VECTOR OF ALL POINTS FOR ALL QUAORATURES
DO 40 K=1.NQ
K1l ={K-17#%NPQ
DO 35 I=1.NPQ
35 UUIKLI+I) = FFOKY+ UDILD)
40 CONTINUE
EVALUATE FUNCTION AT ALL POINTS
NIOTE CHANGE IN CALLING SEQUENCE FOR FUNCTION EVALUATION SUBROUTINE
CALL FXSEUU,FOFX MAXT4NT)
CREATE VECTOR OF WEIGHTS
DD 50 K=1,NQ
K1 ={K-1L)1*NPQ
DO 45 I= 1l.NPQ
45 UUIKL#E) a R{J+1}
50 CONTINUE
DO 80 I=1.NFX
SUM{TI)=0.0
00 70 K=1.NT
T0 SuMLI= SuM{T) +UU(KI* FOFX(K,I}
SUMLL) = DELT * SuMm(I)
80 CONTINUE
RETURN
END

STAR Version in STAR FORTRAN

GLE&S084
GLEG6S0BS
GLEG50Hs
GLEGS087
GLESS08B
GLE6S0BY
GLEGS50%0
GLE6S091
GLE&S092
GLESS093
GLE65094
GLE65095
GLE65U9G
GLESSO9T
GLE65098
GLE&SO99
GLEA&S100
GLE&S101L
GLEASLIOZ2
GLE&S103
GLE65104
GLE&5105
GLE&S106
GLEGSLOT
GLE®S108
GLE&S109

SUBROUTINE GLEGENS{SUM, ICODEs AsBs FXy FOFX s NFXosNQWNPQ UV FFsUDWMAXKIIGLESSOO0L
CHEREE KRR KA AR AR AR R R R R KRR KRR R R R AT R R R E K K

PURPOSE: 70 COMPUTE THE INTEGRALS. F{I} GF X % DX FROW
A TO B USING THE GAUSS~LEGENDRE QUADRATURL
FORMULA.

USE: CALL GLEGEN (SUMyICODE+ABsFXFOFXsNFXJNONPG)

PARAMETERS :
SUM THE ARRAY FOR THE VALUE(S} OF THE INTEGRAL(S)

1CODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE
O, NORMAL RETURMN

l+ NFX NOT PROPERLY SPECIFIED

2, NPQ NOT PROPERLY SPECIFIED (NOT 3 OR 10O}
3, NO NQT PROPERLY SPECIFIED

([T I)

THIS PARAMETER SHOULD BE TESTED UPON RETURN
BY THE CALLING PROGRAM

A LOWER LIMIT OF INTEGRATION
B UPPER LIMIT OF INTEGRATION

FX THE NAME OF A USER SUPPLIED SUBROUTINE WITH

ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS

IT MUST BE DECLARED AS EXTERNAL.

FOFX A TWO DIMENSIONED ARRAY TO STURE VALUES OF THE

FUNCTIONSs FOFX{MAXI4NFX} IN CALLING PROGRAM

*

-
*
*
*
*
*
=
*
™
*
*
%
-
%*
&
o
%
*
*
™
&
*
%
*
*®
%*

GLEGS002
GLESGS003
GLE&5004
GLE&65005
GLE&S000
GLE&SVOT
GLE&S008
GLE65009
GLESLS010
GLEGS011
GLEG6SOL2
GLEGSG13
GLELS014
GLE®650LS
GLEGSOLS
GLEG&SOLT
GLE&SOLSB
GLESSOLY
GLEG65020
GLEGS021
GLE&65022
GLE65023
GLEGSOZ24
GLE&5025
GLEGSD26
GLE&6SO27
GLEG5028
GLEGS0Z9
GLESSO30
GLEGSO3]

APPENDIX B — Continued

ol . . &
te NFX AN INTEGER, THE NO. OF FUNCTIDNS TO INTEGRATE *
Cx *®
ox NG AN INTEGER, THE NUMBER OF QUADRATURES %
x *
C* NPQ AN INTEGER, THE NOa. OF POINTS PER GQUADRATURE =
o IT MUST BE 3 DR 10 x
ol J Uu ARRAY TO STORE ALL POINTS AT WHICH FUNCTIDN IS
o EVALUATED ,ALSO STORES WEIGHTS -
TH EF ARRAY OF WORKING SPACEs CONTAINS LOWER L[HIT Of
T* INTEGRATION FOR EACH QUADRATURE . . .

ot uD ARRAY OF WORKING SPACE. ABSCISSAS* DELY

L&

Sx MAXI MAXIMUM ROW DIMENSTONS OF FOFX IN CALLING PROG.
C* -
¥ REQUIRED RDUTINES: NONE *
Ce . . *
2% SOURCE/IMPLEMENTER: COMPUTER SCIENCES CORP./ Ge We HAIGLER - *
o .
C* DATE RELEASED: NOV. l4,1972 *
o *
C® LATEST REVISIONS NOV. 1541972 *
R I LESEIT S T3 2 koo kot ke ok gk ok Sk kR ok ok ko sk dk akook ko ko Rk ok

~

[9]

ir

DIMENSION UL(3) U20L0),R1E3),R2ZILOI4ULLIFWRIL3DSSUMILI,
L FOFX{MAXT+1 },U0(1 1,.URCL).FF{1 }

EQUIVALENCE (ULIL},Ut1) e tU2{1)oUL4) . {R1{LILRILIIS(R2LLI+RL4))

GLEGS5032
GLE&5033
GLEGS D34
GLEGS035
GLEGS036
GLESGSO3T
GLELS5038
GLEGS039
GLEG6S040
GLEGS04]
GLE&S042
GLE6S043
GLE6S5D44
GLELS045
GLENSO46
GLENSO47
GLENSO48
GLENSO49
GLENSOSG
GLENSO51
GLENSO52
GLENS053
GLENSQ5 4
GLENS(O55
GLENSO56
GLENSDS57
GLENSO58
GLENS5059
GLENSO&60

DATA Ul/el12701665379259¢0544 B87298334620742/2U2/.013046735741414+GLENSOO]
1.06T746831665550744160295215850488,.283302302935376+042550283050918GLENSO6E
25457443 T169490816,, TL66ITHITO646244.839T04T84L49512+.932531683344GLENSDG3
3693, .986953264258580/RL/J2TTTTTITITTTITTIB14444444%45%400440, 0 2TTTTTIGLENSDGA

ATTTITIITTIB/+R2/ 0 0A33356T21543444.0747256T4575291+4109543181257991,

GLENSO65

5.134633359654998+.1477621102357377+. 147762112357377+413463335965479GLENSQGG

6842109543181257991..0747256T45752914+.033335672154344/

ICODE = 0O
NT = TOTAL NUMBER OF POINTS AT WHICH FUNCTION WILL BE EVALUATED
NT=NQ#NPQ
IF{NFX.LE.O)ICODE = 1
IFINQ.LEL.OIICDDE = 3
IFINPQ.EQ.3)IGO T 6§
IFINPU.NELIO)ICODE = 2
5 IF(ICODE.GT.OIRETURN
J=3

IF (NPQ LED. 3) J=0
DELY= {B-A)/FLOATI{NG)
J1 = J+l

NJ= J t+NPQ

cxxxex[OMPUTE ARRAY TO BE ADDED YO FIRST POINT (N EACH QUADRATURE

UDCLENPQ)Y = UCJSLINJY * DELT

“xeexxCOMPUTE FIRST POINT [N EACH QUADRATURE

D0 30 K=1.NO
X! =K-1
30 FF{K} =h & XI*DELT

C*«ekxCOMPUTE ARRAY OF ALL POINTS FOR ALL OQUADRATURES

D0 40 K=1.NQ

KL ={K-11=NPQ

NK= K + NPQ

UUEKI+LsNKE = FF{K) + UD{1:NPQ}
40 CONTINUE
EVALUATE FUNCTION AT ALL POINTS

GLENSO&T
GLENS068
GLENS069
GLENSO70
GLENSOT1
GLENSOT2
GLENSO73
GLENSO74
GLENSO75
GLENSO76
GLENSO77
GLENS(78
GLENSOT9
GLENS080
GLENSO81
GLENSO82
GLENSO83
GLENSOB4
GLENS085
GLENSO086
GLENSO87
GLENSOB8
GLENS089
GLENSO090
GLENSO91
GLENSQ92
GLENSOY3
GLENS094

25

[%]

£3I4rr VY

£

26

APPENDIX B ~ Concluded

NOTE CHANGE IN CALLING SEQUENCE FOR FUNCTION EVALUATION SUBROUTINE GLENSQ95

CALL FXS(UUsFOFX+MAXI.NT]) GLENSO9s
CREATE VECYOR OF WEIGHTS GLENSO9T
00 50 K=]1,NO GLENSO93

K1 ={K-1)*NPQ GLENSO99

NK = K+ NPQ GLENSLOO
UBIKI+LINK) = RE{JLIINI) GLENSLOL

S50 CONTINUE GLENS 102
THESE STATEMENTS CAN BE REPLACED BY 00T PRODUCT FUNCTION IF AVAILABLEGLENSLO3
SUCH AS GLENSLO4
SUMLI) = DOTP (UULLIxNT) H,FOFX{L1:z:NT. I) GLENSLOS
GLENS10%

L GLENSLO?
DO B0 Y=L .NFX GLENSLO8
Sumi1)=0.0 GLENSLO9

DO 70 K=1,4NT GLENSLLQ

70 SUM(Id= SUMIT) «UU(K)®* FOFXIK:I) GLENSLLL
SUM(TI) = DELT * SumMm(i 1) GLENSLLZ

80 CONTINUE GLENSEL13
e GLENSLLS
RETURN GLENSLL1S
END GLENSLLS

REFERENCES

1. Anon.;: Control Data STAR Computer System FORTRAN Reference Manual,
60384500 A, Control Data Corp., ¢.1973.

2, Anon,: Control Data STAR-100 Computer System Hardware Reference Manual,
60256000 06, Control Data Corp., ¢.1973.

3. Denning, Peter J.: Virtual Memory. Comput. Surv., vol. 2, no. 3, Sept. 1970,
pp. 153-189.

4, Lambiotte, Jules J., Jr.; and Howser, Lona M.: Vectorization on the STAR Computer
of Several Numerical Methods for a Fluid Flow Problem, NASA TN D-7545, 1974.

5. Hildebrand, F. B.: Introduction to Numerical Analysis. McGraw-Hill Book Co., Inc.,
1956.

NASA-Langley, 1974 Li-9380 21

